Combining Multilevel and Rasch Model for the Evaluation of a Service

La Valutazione di un Servizio Utilizzando il Modello di Rasch Congiuntamente al Modello Multilevel

Maria Chiara Zanarotti
Università Cattolica, L.go Gemelli, 1, 20123, Italy, e-mail: chiara.zanarotti@unicatt.it

Laura Pagani
Università di Udine, Via Treppo, 18, 33100, Italy, e-mail: laura.pagani@dss.uniud.it

Keywords: Rasch Models, Multilevel Models, Ordinal Data.

1. Introduction

In the evaluation of a service the main difficulty is how to measure its quality. Quality is not directly observable and measurable, but is a latent variable: to obtain information about its magnitude it is necessary to construct a suitable measure tool. Usually in practice researchers carry out a questionnaire formed by a few items relating to different aspects of the service, and customers compile that questionnaire. Typically answers are ordinal categories that vary from “very dissatisfied” (or very insufficient, or strongly disagree) to “very satisfied” (or very good, or strongly agree), and these ordinal data are influenced by the quality level of the particular aspect each item concern, but also by individual, subjective characteristics of the respondents. The statistician so has to elaborate data that not only are expressed through an ordinal categorical scale, but result from all the previous mentioned aspects. A desirable step for similar data is to transform this ordinal and composite information to obtain an universal measure on an interval scale. A possible solution to obtain this kind of measure is represented by the Rasch model. In 1960 Georg Rasch (Rasch, 1960) suggested a model that starting from raw scores resulted from items is able to construct linear continuous measures of both items and subjects. As pointed out by a lot of authors (see, for example, Molenaar and Fisher, 1995; Bond and Fox, 2001), this model represents a very appealing way to obtain universal, objective measures in social
sciences. In this paper, after a brief presentation of the methodology used, the Rasch model is used to obtain items and subjects measures (so called item and person parameters) and these measures are introduced in multilevel models to study the effectiveness of university courses in an Italian University.

2. The Rasch measures of item and subjects

The Rasch model was originally introduced in psychometric field for the study of misreading in oral test, but because of its utility, importance, simplicity and flexibility, it has an increasing success in other applied field (in social sciences as well as in medicine). To better understand the meaning of Rasch measures, first consider the dichotomous model, that is the model obtained when each item has only two possible responses (true or wrong, generally coded 1 and 0). Through Rasch model is possible to construct measures based on probabilistic relations between any item’s difficulty and any persons’ ability. The idea underlying the Rasch model is the following: the more difficult one item is, the more probable is only person with high ability gives correct answer to it; the more able one person is, the more probable is that his responses are correct for a lot of items, particularly for the simplest ones. If \(X_{ij} \) denote response of person \(i \) \((i=1, \ldots, I)\) to item \(j \) \((j=1, \ldots, J)\), then \(X_{ij}=1 \) means person \(i \) give correct answer on item \(j \), and \(X_{ij}=0 \) means the contrary, i.e. incorrect answer. The Rasch model supposes that the probability \(P(X_{ij}=1) \) is a function of the difference between ability of person \(i \) and difficulty of item \(j \), i.e.: \(P(X_{ij}=1)=f(\beta_i-\delta_j) \). The parameters \(\beta_i \) \((i=1, \ldots, I)\) are called person parameters, and they are the Rasch (linear continuous) measures of person ability; the parameters \(\delta_j \) \((j=1, \ldots, J)\) are called item parameters, and they are the Rasch (linear continuous) measures of item difficulty. As function \(f(\cdot) \), Rasch used the logistic transformation, i.e.:

\[
P(X_{ij}=1) = \frac{\exp(\beta_i - \delta_j)}{1 + \exp(\beta_i - \delta_j)} \tag{1}
\]

so that: \(\ln(P(X_{ij}=1)/[1- P(X_{ij}=1)]) = \beta_i - \delta_j \). By means of the parameters \(\beta_i \) and \(\delta_j \), with Rasch model is possible to represent on an interval-scale both items and persons (their difficulty and ability measures, respectively) along a unique dimension. Row and column total scores are used to obtain maximum likelihood estimates of persons and items parameters. The parameters estimation is simple because of the parameter separation theorem, that hold for the entire family of Rasch models (see, for example, Fisher et al. 1995). This paper focuses on the ordinal extension of the Rasch model obtained when each items has \(K \) ordinate response categories; in particular the so called Partial Credit Model (PCM) is used. For this model, probability that person \(i \) \((i=1, \ldots, I)\) chooses response \(k \) \((k=1, \ldots, K)\) for item \(j \) \((j=1, \ldots, J)\) instead of response \(k-1 \), is:

\[
P(X_{ij} = k \mid \beta_i, \delta_j, \tau_{k(j)}) = \frac{\exp(\beta_i - \delta_j - \tau_{k(j)})}{\sum_{k=1}^{K} \exp(\beta_i - \delta_j - \tau_{k(j)})} \tag{2}
\]
In PCM there is a new set of \(J \times (K-1) \) parameters \(\tau_{kj} \) (called thresholds) that give a measure of the difficulty to endorse each response category over the previous one. The use of Rasch models in quality evaluation of a service, as already made by other authors (for example, Bertoli-Barsotti and Franzoni, 2001), implies a new meaning for the parameters: person parameters \(\beta_i \) \((i=1,\ldots,I)\), in this context, represent individual satisfaction (instead of person ability, as before). High values of person parameter mean highly satisfied persons, while low values mean the reverse; by item parameters \(\delta_j \) \((j=1,\ldots,J)\), on the other hand, is possible to measure and ordinate items from the one with the best quality to the one with the worst quality. Note that the scale for item parameters has to be read on the contrary: high values means that it is very difficult to endorse high categories for these items, and low values mean the reverse.

The PCM formulation of Rasch model is used in this paper to analyse a data set constituted by 345 questionnaires administrated during year 2000 to students of the Faculty of Economy, University of Udine (Italy), to evaluate 59 university courses. The questionnaire was formed by 3 sections: a) information on the students’ characteristics (age, gender, type of high school attended, and so on); b) 18 general items about teacher and course characteristics; c) a last item on global satisfaction. The responses to each item are collected through a four points categorical scale (not at all satisfied, dissatisfied, satisfied, very satisfied). Data were analysed with RUMM 2010 (RUMM Laboratory Pty Ltd), a standard software for the Rasch analysis.

3. Rasch measures and multilevel models in evaluation of effectiveness of university courses

In this section we use the person parameters (PP) obtained with the PCM Rasch model as a dependent variable in a multilevel model to assess courses effectiveness. There is a large literature on multilevel models (see, for example, Goldstein, 1995) and on multilevel models used to evaluate public sector activities (Goldstein and Spiegelhalter, 1996, among others). The aim here is to evaluate the effectiveness of university courses considering questionnaires \((i=1,\ldots,345)\) as level-1 units and courses \((m=1,\ldots,59)\) as the level-2 units. Since PP are continuous measures of students satisfaction, after checking PP normality with a Kolmogorov-Smirnov test (\(D=0.0614; \ p\)-value 0.066), a standard multilevel model is used. Several models with different sets of explanatory variables and with different assumptions about the random part have been fitted. The final model is a two-level random intercept one with the following hypothesis:

\[
Y_{im} = \alpha_0 + \sum_{h=1}^{H} \alpha_h w_{hm} + \sum_{k=1}^{K} \beta_k z_{km} + U_{0m} + R_{im}, \quad U_{0m} \sim N(0, \sigma^2_u), \quad R_{im} \sim N(0, \sigma^2_r)
\]

Results (see table 1), for fixed parameters, show that: the mark “Good” as final grade of secondary school, to be a female student, not to be first year student, to attend a compulsory course and to have a female teacher imply a negative effect on the PP; to attend over the 60% of the lessons, on the contrary, has a positive effect on the PP. The main result for the random parameters is the significance of the second level variance. This means that PP variability (i.e. variability of the level of satisfaction) depends also on the differences among courses (there is a course effect on PP).
Moreover, the intra-course correlation says that the 30% of the residual PP variability is due to the course effect.

Table 1: Parameters estimation for two-level random intercept model

<table>
<thead>
<tr>
<th>Fixed Parameters</th>
<th>Estimate</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.378</td>
<td>0.384</td>
</tr>
<tr>
<td>Good</td>
<td>-0.374</td>
<td>0.158</td>
</tr>
<tr>
<td>Female Student</td>
<td>-0.427</td>
<td>0.153</td>
</tr>
<tr>
<td>More than second</td>
<td>-0.364</td>
<td>0.191</td>
</tr>
<tr>
<td>Over 60%</td>
<td>0.741</td>
<td>0.252</td>
</tr>
<tr>
<td>Compulsory</td>
<td>-0.584</td>
<td>0.291</td>
</tr>
<tr>
<td>Female teacher</td>
<td>-0.535</td>
<td>0.303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Parameters</th>
<th>Estimate</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance between questionnaires</td>
<td>1.684</td>
<td>0.141</td>
</tr>
<tr>
<td>Variance between courses</td>
<td>0.722</td>
<td>0.221</td>
</tr>
<tr>
<td>Intra-course correlation</td>
<td>0.300</td>
<td></td>
</tr>
</tbody>
</table>

4. Concluding remarks

The Rasch Model allowed to obtain a measure, on an interval scale, for every student (PP parameter). This measure, that reflects student satisfaction, has been introduced in a two levels multilevel model to study effects of some covariates on PP. This procedure permits to use all the information included in the questionnaire to measure students satisfaction and then to investigate relations with covariates. In standard multilevel approach, in fact, only one ordinal variable at time can be considered as dependent, so covariate effects are investigated for each response variable separately.

Further research will try to take into consideration also the other parameters obtained by Rasch model, *i.e.* the item parameters, that in the present work have not been considered in the model.

References

